SPOT: An R Package For Automatic and Interactive Tuning of Optimization Algorithms by Sequential Parameter Optimization
نویسنده
چکیده
The sequential parameter optimization (spot) package for R (R Development Core Team, 2008) is a toolbox for tuning and understanding simulation and optimization algorithms. Model-based investigations are common approaches in simulation and optimization. Sequential parameter optimization has been developed, because there is a strong need for sound statistical analysis of simulation and optimization algorithms. spot includes methods for tuning based on classical regression and analysis of variance techniques; tree-based models such as CART and random forest; Gaussian process models (Kriging), and combinations of di↵erent metamodeling approaches. This article exemplifies how spot can be used for automatic and interactive tuning.
منابع مشابه
Tuning Simulated Annealing Using the Sequential Parameter Optimization Toolbox spot
The sequential parameter optimization (spot) package for R (R Development Core Team, 2008) is a toolbox for tuning and understanding simulation and optimization algorithms. Model-based investigations are common approaches in simulation and optimization. Sequential parameter optimization has been developed, because there is a strong need for sound statistical analysis of simulation and optimizat...
متن کاملIn a Nutshell: Sequential Parameter Optimization
The performance of optimization algorithms relies crucially on their parameterizations. Finding good parameter settings is called algorithm tuning. Using a simple simulated annealing algorithm, we will demonstrate how optimization algorithms can be tuned using the sequential parameter optimization toolbox (SPOT). SPOT provides several tools for automated and interactive tuning. The underling co...
متن کاملSPOT: A Toolbox for Interactive and Automatic Tuning in the R Environment
Sequential parameter optimization is a heuristic that combines classical and modern statistical techniques to improve the performance of search algorithms. It includes methods for tuning based on classical regression and analysis of variance techniques; tree-based models such as CART and random forest; Gaussian process models (Kriging), and combinations of different meta-modeling approaches. Th...
متن کاملA Gentle Introduction to Sequential Parameter Optimization
There is a strong need for sound statistical analysis of simulation and optimization algorithms. Based on this analysis, improved parameter settings can be determined. This will be referred to as tuning. Model-based investigations are common approaches in simulation and optimization. The sequential parameter optimization toolbox SPOT package for R [5] is a toolbox for tuning and understanding s...
متن کاملSEQUENTIAL PENALTY HANDLING TECHNIQUES FOR SIZING DESIGN OF PIN-JOINTED STRUCTURES BY OBSERVER-TEACHER-LEARNER-BASED OPTIMIZATION
Despite comprehensive literature works on developing fitness-based optimization algorithms, their performance is yet challenged by constraint handling in various engineering tasks. The present study, concerns the widely-used external penalty technique for sizing design of pin-jointed structures. Observer-teacher-learner-based optimization is employed here since previously addressed by a number ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1006.4645 شماره
صفحات -
تاریخ انتشار 2010